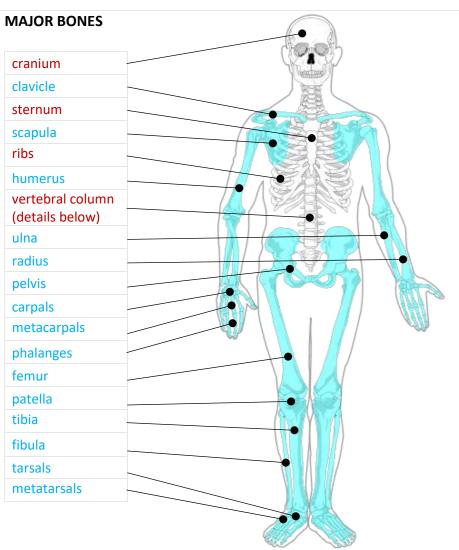

KNOWLEDGE ORGANISER

Unit 1 Anatomy & Physiology: The Skeletal System

TYPES OF BONES & THEIR FUNCTIONS

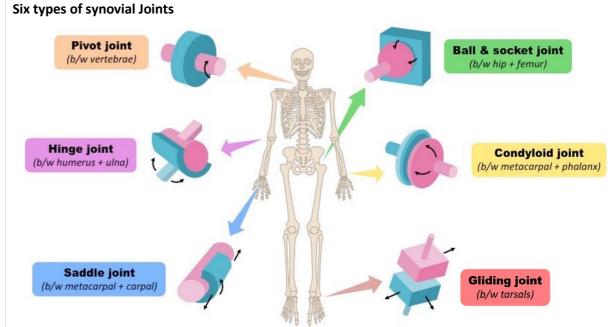

THE SOLD ONE SOLD THE INTO NOTIONS			
Type of Bone		Function	Example
1.	Long Bones	Leverage & red blood cell production	Femur, Humerus
2.	Short Bones	Weight bearing	Tarsals, Carpals
3.	Flat Bones	Protection	Cranium, Sternum
4.	Sesamoid Bones	Reducing friction across a joint, embedded in a tendon	Patella
5.	Irregular Bones	Individualised functions	Pisiform

PROCESS OF BONE GROWTH

FUNCTIONS OF THE SKELETON

- 1. Supporting framework
- 2. Protection
- 3. Attachment for muscle
- **4.** Blood cell production
- **5.** Store of minerals
- **6.** Leverage
- **7.** Weight bearing
- 8. Reducing friction across joints


JOINTS


Classifications

1. Fibrous (fixed)

2. Cartilaginous (slightly moveable)

3. Synovial (freely moveable)

Bones forming specific joints

Shoulder
Scapula, Clavicle, Humerus
Joint Type: Ball & Socket
Elbow
Humerus, Radius, Ulna
Joint Type: Hinge

Wrist

Carpals, Radius, Ulna
Joint Type: Hinge

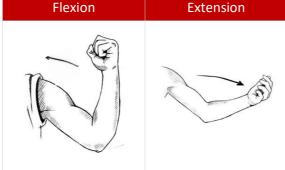
Hip

Illium, Pubis, Ischium, Femur Joint Type: Ball & Socket

Knee

Femur, Tibia, Fibula

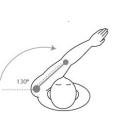
Joint Type: Hinge

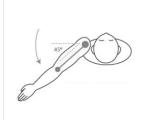

Ankle

vertebrae

Tibia, Fibula, Talus

Joint Type: Hinge



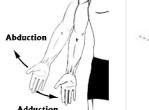

Dorsi- & Plantar-flexion

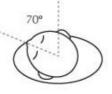
Lateral Flexion

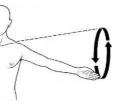
Horizontal Flexion

Horizontal Extension

Hyperextension




Circumduction


Horizontal Abduction | Horizontal Adduction

Α

Postural Deviations

(in diagram above)

Spine:

AREAS OF THE SKELETON

Axial in Red & Appendicular in Blue

7 Cervical, 12 Thoracic, 5 Lumbar,

Curvature & Alignment (as shown)

5 Sacral, 4 Coccygeal vertebrae

Kyphosis: excessive curvature of *thoracic* spine Lordosis: excessive curvature of *lumbar* spine

RESPONSES TO EXERCISE (Short Term)

1. Stimulated increase of mineral uptake in bones due to weight bearing exercise

Thoracic

ADAPTATIONS TO EXERCISE (Long Term)

- 1. Increased bone strength
- 2. Increased ligament strength

- 1. Skeletal disease: exercise offsets the risks of arthritis, osteoporosis
- 2. Age: Young children at risk of greenstick fracture, resistance training may stunt growth (though disputed)

KNOWLEDGE ORGANISER

Unit 1 Anatomy & Physiology: The Muscular System

Muscles cannot push so are 'paired' with others that pull in the opposite direction.

Agonist: muscle that contracts to produce movement (also called prime mover)
 Antagonist: muscle that relaxes (if contracted would make opposite joint movement)

Elbow Flexion
AGONIST

Biceps Brachii

SYNERGISTS

Brachialis & Brachioradialis

FIXATOR

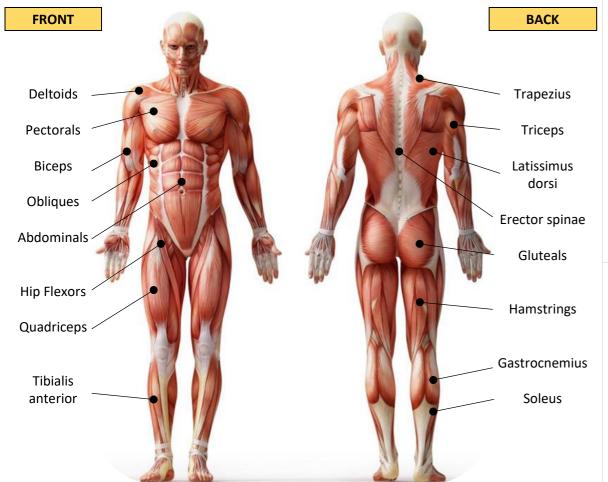
Rotator Cuff

ANTAGONIST

Triceps Brachii

4. Fixator: muscle that assists the agonist (by stabilising the muscle's origin)

3. Synergist: muscle that assists the agonist (in force production)


CHARACTERISTICS & FUNCTIONS OF THREE TYPES OF MUSCLE

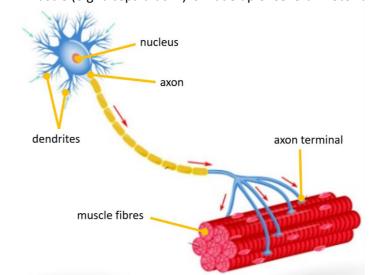
Muscle	Characteristics	Example
Cardiac	Non-fatiguing, involuntary	Heart (only)
Skeletal	Fatiguing, voluntary	Biceps, Triceps, Soleus, etc.
Smooth	Involuntary, slow contraction	Internal organs, blood vessels

THREE TYPES OF SKELETAL MUSCLE CONTRACTION

Contraction	As muscle contracts	Used for
Isometric	no change in muscle length	Static holds (e.g. iron cross)
Concentric	muscle shortens	Movement
Eccentric	muscle lengthens	Slowing and braking movements

MAJOR SKELETAL MUSCLES

Wrist Extensor / Supinator Group Front of the forearm. Inserting on the thumb/radius side Wrist Flexor / Pronator Group Back of the forearm Inserting on the little finger/ulna side


MUSCLE FIBRE TYPES

Characteristics of different muscle fibre types

Fibre Type	Type I	Type IIa	Type IIx
Twitch Speed	Slow	Fast	Fast
Force	Low	High	Very High
Fatigue	Slow	Medium	Fast
Recovery	Slow	Medium	Fast
ATP Source	Oxidative	Ox. & Gly.	Glycolytic
Blood Supply	High	High	Low
Myoglobin	High	High	Low
Colour	Red	Red	White
Mitochondria	High	High	Low
Recruitment	First	Second	Third
Diameter	Small	Medium	Large
Suitable for	Endurance	Games	Speed

NERVOUS CONTROL OF MUSCLE CONTRACTION Motor Units

- A motor unit is a motor neuron and all the fibres it 'innervates'
- All the fibres in a motor unit are of the same type.
- A muscle (e.g. biceps brachii) is made up of several motor units.

- An electrical impulse is sent along the neuron.
- If the impulse if sufficient **all** the fibres in the motor unit contract.
- Otherwise none of them contract. This is the 'all or none law'.
- To create more force more motor units must be 'innervated'.

RESPONSES TO EXERCISE (Short Term)

- Increased blood supply
- 2. Increased muscle temperature
- 3. Increased muscle pliability
- 4. Lactate (high intensity exercise)
- 5. Micro-tears (resistance exercise)

NERVOUS CONTROL OF MUSCLE CONTRACTION

(RF, VM, VI, & VL)

ANTAGONIST

Quadriceps

Fibre Type Recruitment

ANTAGONISTIC PAIRS

Knee Flexion

AGONIST — Hamstrings (BF, ST, & SM)

SYNERGIST

FIXATORS

Gastrocnemius (& others)

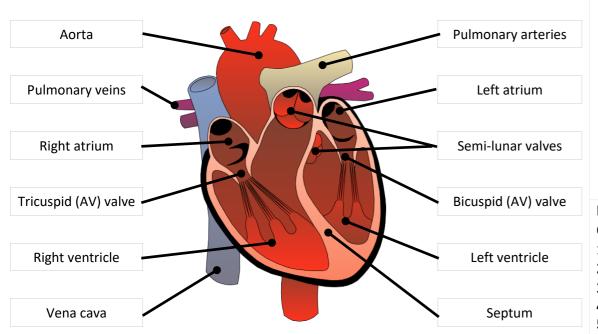
Glutes (& others)

Maximal force production requires all the fibres, in all the motor units to fire. Type IIx Sub-maximal force production recruits fibres up to the required total. Type IIa Percentage of Maximal Force

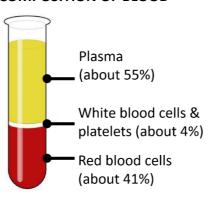
ADAPTATIONS TO EXERCISE (Long Term)

- 1. Hypertrophy
- 2. Increased tendon strength
- 3. Increase in myoglobin stores
- 4. Increase in number and size of mitochondria
- 5. Increased storage of glycogen
- 6. Increased storage of fat
- 7. Increase tolerance to lactate

ADDITIONAL FACTORS


- 1. Age: Loss of muscle mass, atrophy
- 2. Cramp: Involuntary, sustained skeletal muscle contraction

Made by Mike Tyler @MikeTylerSport


KNOWLEDGE ORGANISER

Unit 1 Anatomy & Physiology: The Cardiovascular System

STRUCTURE OF THE HEART

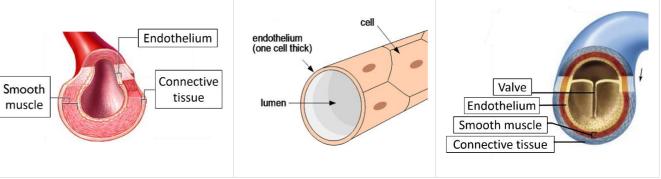
COMPOSITION OF BLOOD

FUNCTIONS OF THE CARDIOVASCULAR SYSTEM

- 1. Delivery of oxygen and nutrients
- 2. Removal of waste products
- 3. Thermoregulation
- 4. Fight infection
- 5. Clot blood

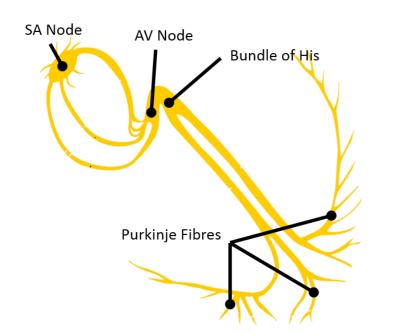
STRUCTURE OF BLOOD VESSELS

ARTERY (& arteriole)


- 1. Away from the heart
- 2. Oxygenated blood*
- **3.** Thick walls
- 4. High pressure

CAPILLARY

- **1.** In the tissue
- 2. Gaseous exchange
- Very thin walls
- 4. High pressure


VEIN (& venule)

- **1.** Back to the heart
- 2. Deoxygenated blood*
- **3.** Thin walls
- **4.** Lower pressure
- **5.** Valves

*except for pulmonary artery/pulmonary vein where this is reversed

NERVOUS CONTROL OF THE CARDIAC CYCLE Electrical Impulse Pathway

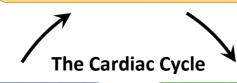
2. Atrioventricular Node

Septum near atria

Delays, then conducts

through to ventricles

3. Bundle of His


Septum

Conducts to base of

ventricles

1. Atrial Systole

- Blood is pushed into ventricles through AV valves

4. Iso-volumetric Relaxation

• Semi-lunar valves close ('Dub')

4. Purkinje Fibres

Ventricle walls

Conducts up ventricle

walls

• Filling occurs passively as blood returns to heart

2. Iso-volumetric Contraction

- Pressure pushes AV valves closed ('Lub')
- Pressure forces Semi-lunar valves open

3. Ventricular Ejection

- Both ventricles contract
- Blood is ejected into Aorta / Pulmonary artery

Semilunar valves close 120 Semilunar 100 valves open 80 Pressure (mm Hg) Aortic pressure 60 Ventricular pressure **AV** valves open AV valves 20 close Atrial pressure

SYMPATHETIC NERVOUS SYSTEM

Influence of the Autonomic Nervous System on the Cardiac Cycle

EXCITES

- 1. Secretes adrenaline & noradrenaline
- 2. Increases Heart Rate
- 3. Increases Blood Pressure
- 4. Increases contractile force of cardiac muscle
- 5. Stimulates vasoconstriction/vasodilation.

PARASYMPATHETIC NERVOUS SYSTEM

CALMS

- 1. Decreases Heart Rate
- 2. Decreases Blood Pressure
- 3. Decreases Cardiac Output (Q)

RESPONSES TO EXERCISE (Short Term)

- 1. Anticipatory increase in heart rate prior to exercise
- 2. Increased heart rate

1. Sinoatrial Node

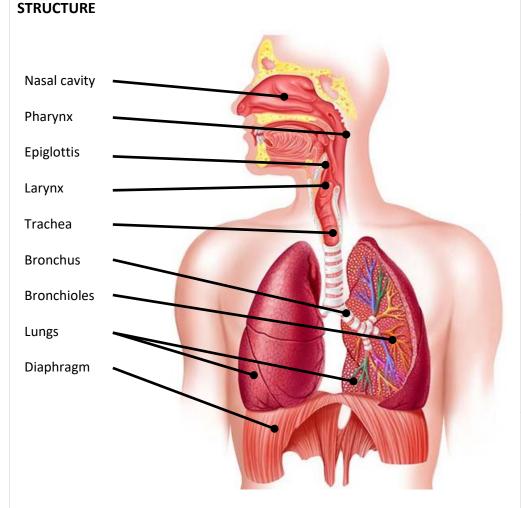
Right atrium near vena

Triggers atrial systole

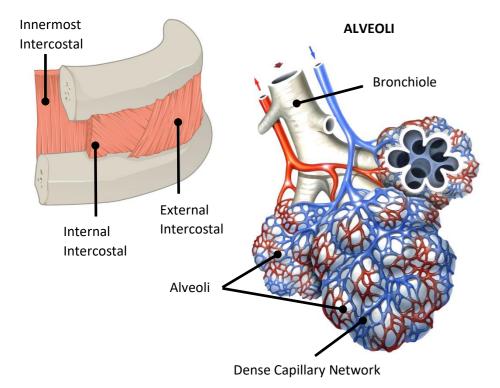
cava

- 3. Increased cardiac output
- 4. Increased blood pressure

ADAPTATIONS TO EXERCISE (Long Term)


- 1. Cardiac hypertrophy
- 2. Increase in resting and exercising stroke volume
- **3.** Decrease in resting heart rate
- Capillarisation of skeletal muscle and alveoli
- Reduction in resting blood pressure
- Decreased heart rate recovery time
- 7. Increase in blood volume

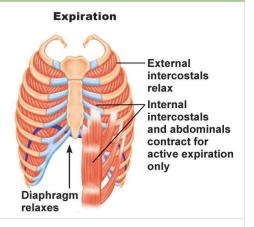
- 1. Sudden arrhythmic death syndrome (SADS)
- 2. High blood pressure / low blood pressure
- **3.** Hyperthermia / hypothermia


- 5. Redirection of blood flow

Unit 1 Anatomy & Physiology: The Respiratory System

KNOWLEDGE ORGANISE

INTERCOSTAL MUSCLES

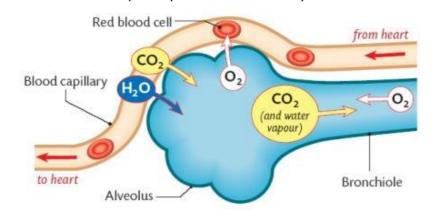

MECHANISMS OF BREATHING

	Inspiration	Expiration
Diaphragm	Contracts = Flattens	Relaxes = Domes
External Intercostals	Contract = Lifts rib cage	Relax = Rib cage drops *
Chest cavity	Increases	Decreases
Thoracic Pressure	Drops	Rises
Air flows	In	Out

*During exercise exhalation becomes an **active** process.

The internal intercostal muscles contract to pull the rib cage down.

External intercostals contract Diaphragm contracts


LUNG VOLUMES

Lung Volume	Definition
Tidal Volume	Total air inhaled/exhaled in one breath under resting conditions*
Vital Capacity	Maximum amount of air that can be expired after a maximum inhalation
Residual Volume	Amount of air remaining in the lungs after a forced exhalation
Total Lung Volume	Maximum amount of air in the lungs after a maximum inspiration
Minute Ventilation (VE)	Total amount of air inhaled / exhaled per minute

*During exercise, tidal volume (TV) and respiratory rate (RR; breaths per minute) increase. Together these increase Minute Ventilation (VE). TV x RR = VE

GASEOUS EXCHANGE

This is where the respiratory and cardiovascular systems meet.

1. Inspired oxygen arrives at the alveoli

2. Oxygen dissolves in the moist alveolar membrane

3. Oxygen diffuses through the membrane

TV

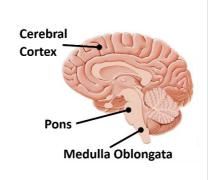
4. Each alveolus is surrounded by capillaries

VC

5. Oxygen is taken up by the red blood cells

TLV

5. CO2 is breathed out, along with water vapour


4. CO2 diffuses across the thin alveolar membrane

3. CO2 dissolves at the moist membrane

2. CO2 arrives in the blood from the body

1. CO2 is a product of respiration

CONTROL OF BREATHING

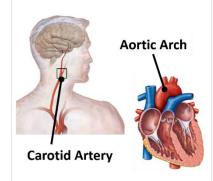
Neural Control Involuntary Control

Breathing is controlled automatically by the respiratory control centre (the Medulla Oblongata and Pons)

Voluntary Control

Breathing can be controlled voluntarily by the cerebral cortex (e.g. holding your breath or deliberately hyperventilating)

Chemical Control


Chemoreceptors are located in the aorta, carotid artery & medulla oblongata. They...

Detect change in blood CO2 concentration

- Exercise means CO2 concentration goes up
- · Breathing rate is increased
- CO2 removal speeds up

Detect change in pH (acidity)

- Exercise means blood lactate (acidic) builds up
- Breathing rate is increased
- Lactate breakdown speeds up

RESPONSES TO EXERCISE (Short Term)

- 1. Increase in breathing rate
- 2. Increased tidal volume

ADAPTATIONS TO EXERCISE (Long Term)

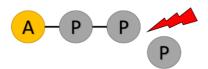
- 1. Increased vital capacity
- 2. Increased strength of the respiratory muscles
- **3.** Increase in oxygen and carbon dioxide diffusion rates

- 1. Asthma
- 2. Effects of altitude/partial pressure on the respiratory system

THE ROLE OF ATP IN EXERCISE

ATP is stored in the muscles.

It is readily available to be broken down.


No other compound can be used by the body.

2. ATP Structure

A - P - P - F

ATP consists of 3 phosphates attached to an Adenine group.

3. ATP Breakdown

The final phosphate is broken off & energy is released. Energy is now available for muscular contraction. ADP is left.

A - P - P - P

4. ATP Resynthesis

Resynthesis of ATP from ADP occurs via 3 pathways. The pathway used will be determined by intensity/duration, fuel source & availability of oxygen.

By products include CO2, O2 and H2O.

1 Glycogen molecule produces up to 38 new

ATP molecules. (But rarely achieves this yield)

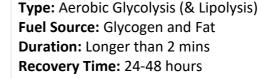
More energy is produced here.

1. THE ATP-PC (ALACTIC) ENERGY SYSTEM

Type: Anaerobic

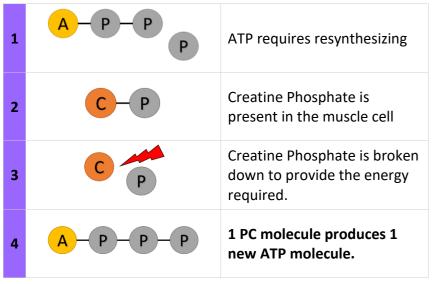
Fuel Source: Creatine Phosphate (PC)
Duration: Approx. 6-10 seconds
Recovery Time: About 3 mins

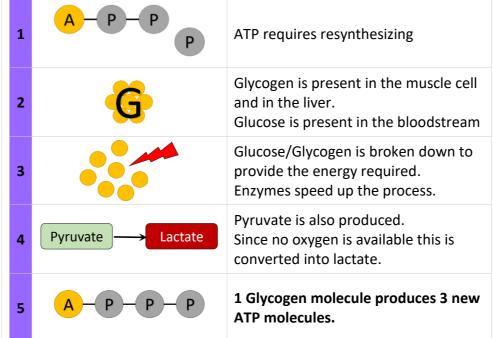
Used in: Sports requiring explosive power


2. THE LACTATE ENERGY SYSTEM

Type: Anaerobic Glycolysis Fuel Source: Glycogen

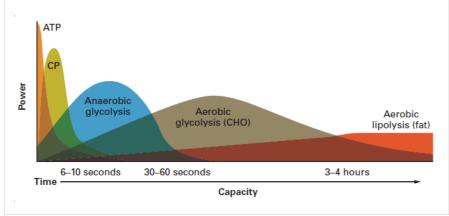
Duration: Approx. 10 secs to 2 mins


Recovery Time: 1-2 hours


Used in: Stop/start games, field & court sports

3. THE AEROBIC ENERGY SYSTEM

Used in: Long distance & endurance events



ATP requires resynthesizing Glycogen is present in the muscle cell and in the liver. Glucose is present in the bloodstream Glucose/Glycogen is broken down to provide the energy required. Enzymes speed up the process. Pyruvate is also produced. Acetyl Pyruvate Oxygen is available so pyruvate is broken down into Acetyl CoA Or, Acetyl CoA can be created from fats by a Acetyl process called beta-oxidation Acetyl CoA passes through the Krebs Cycle and the Electron Transport Chain (ETC)

ENERGY CONTINUUM

At any given time, all the energy systems are in use. The proportion is determined by intensity of demand for energy.

ADAPTATIONS TO EXERCISE (Long Term)

ATP-PC (alactic) energy system

1. Increased creatine stores.

Lactate energy system

1. Increase tolerance to lactate.

Aerobic energy system

- 1. Increased use of fats as an energy source.
- 2. Increased storage of glycogen.
- **3.** Increased numbers of mitochondria.

- 1. Diabetes (hypoglycaemic attack)
- 2. Children's lack of a lactate system